Golf Course Management

APR 2018

Golf Course Management magazine is dedicated to advancing the golf course superintendent profession and helping GCSAA members achieve career success.

Issue link:

Contents of this Issue


Page 87 of 159

82 GOLF COURSE MANAGEMENT 04.18 new roots. However, although fertilized plants had more roots, those roots were shorter, and individual roots in plants that received no ni - trogen were often longer. So, where was the nitrogen going in each plant? Even when nitrogen was not added, ni - trogen was being transferred from the inter- node to new shoots and roots. Pools of nitrogen in the node and old roots were small and tended to stay constant throughout growth. Supplying external nitrogen changed how the plant ac - cumulated nitrogen. In the first 10 days, the plant was still obtaining nitrogen from the stored internode nitrogen. After that, the old roots began to take up fertilizer nitrogen, and it also accumulated in the shoots. By day 14, most of the nitrogen in new roots was from the fertilizer nitrogen. By the 21-day harvest, about 28% of the nitrogen in the internode and 40% of the nitrogen in the nodes and old roots was from the fertilizer. Thus, the growing bermu - dagrass used fertilizer nitrogen to replenish the existing nitrogen (in the internodes). This work demonstrates that internal ni - trogen reserves (primarily in the internodes) were sufficient to provide nitrogen for bermu - dagrass as it broke dormancy. That supply was sufficient to promote shoot growth for only the first 10 to 14 days, after which supplemental nitrogen was needed to continue growth. This work supported the standard recommenda - tion that nitrogen fertilization should start at around two weeks after first green-up, when the growing bermudagrass is ready to use that applied nitrogen. Source: Sermons, S.M., B.G. Wherley, C. Zhang, D.C. Bowman and T.W. Rufty. 2017. The role of internal and external nitrogen pools in bermudagrass growth during spring emer - gence from dormancy. Journal of Plant Nutri- tion 40:1404-1416. Beth Guertal, Ph.D., is a professor in the Department of Crop, Soil and Environmental Sciences at Auburn University in Auburn, Ala., and the president-elect of the Crop Science Society of America. She is a 20-year member of GCSAA. Beth Guertal, Ph.D. Twitter: @AUTurfFert I'm not dead; I'm dormant (verdure) In many regions, bermudagrass likes to take a lengthy timeout, going dormant in colder weather. After a few months of hang - ing out and being brown, the bermudagrass will begin to break dormancy, greening up and growing. But when do we fertilize that emerg - ing bermudagrass? Does it immediately need an application of fertilizer nitrogen, or is the residual nitrogen hanging out in the stolons/ rhizomes (stems) and roots sufficient for use by the grass? That's the question researchers at North Carolina State University set out to an - swer, using labeled nitrogen in a growth cham- ber study to determine which pool of nitrogen was providing the growing bermudagrass its nitrogen nutrition. To trace the source of the nitrogen, re - searchers first collected dormant, established common bermudagrass and then cut individ - ual nodes and internodes (with attached roots) from washed stolons. (A node is the growth tissue, from which new shoots emerge.) The plant material was moved to a greenhouse, and half of the nodes were grown with labeled nitrogen( 15 N). Labeling allows the nitrogen to be tracked as it is taken up and moved around within the plant. All the harvested nodes were allowed to grow for 21 days, with plants destructively harvested at three, six, 10, 14 and 21 days as the bermudagrass grew and broke dormancy. At each harvest time, the plantlet was sepa - rated into the node, internode, old root, new roots and individual shoots, and each part was analyzed for labeled (the 15 N) and unlabeled nitrogen contents. As the bermudagrass grew and broke dor - mancy, new growth occurred in two places: shoots and new roots. The dry weight of the internodes dropped during this time, and the weight of the nodes was unaffected. Although shoots that received nitrogen fertilizer were bigger than those that did not receive nitrogen, the weights were not significantly different at 21 days. Also, shoots appeared at the same rate over time, regardless of nitrogen fertilization. As for the roots, their length and number were affected by nitrogen fertilization, with fertil - ized bermudagrass having a greater number of So, where was the nitrogen going in each plant? Even when nitrogen was not added, nitrogen was being transferred from the internode to new shoots and roots.

Articles in this issue

Links on this page

Archives of this issue

view archives of Golf Course Management - APR 2018